

Voice Interfacing and Control of Home IoT Networks

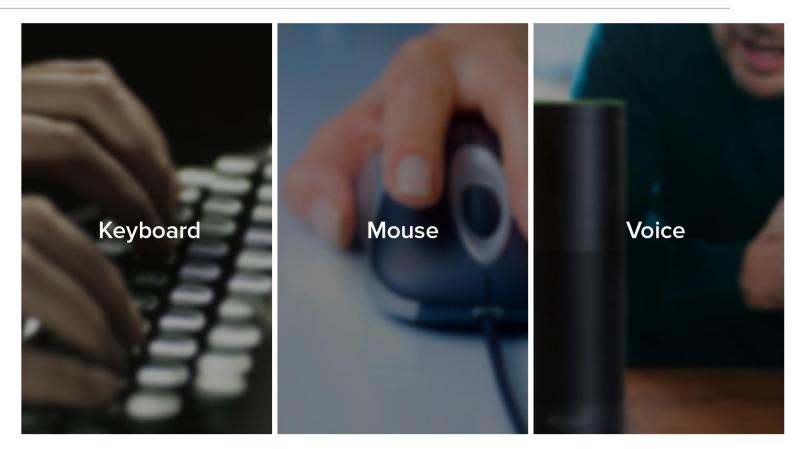
Our Mentor: Prof. Prasad Honnavalli

Shashank Prabhakar	01FB16ECS356
Shrey Tiwari	01FB16ECS368
Sumanth V Rao	01FB16ECS402

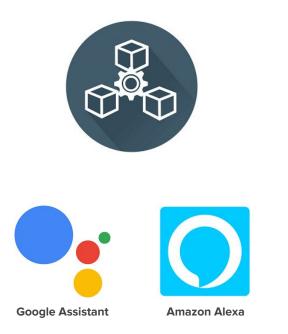
- Introduction
 - Motivation
 - Project abstract and scope
 - Requirements
- Concept
 - Literature Survey
 - Architecture
 - Threat Modelling
 - Design Choices
- Next Steps
 - Skills Development
 - Prototype

Motivation

Current IoT Home Automation Landscape


- High Cost Expensive products and high installation/modification charges
- No Interoperability Products are tied to their specific platforms
- Low on security
 Many attack surfaces for IoT networks
- Fragmented

•


Solutions and technologies that are incomplete and specific

• **Mutually exclusive ecosystems** Market is dominated by a few companies and they have different sales channels.

- Our project aims to build an intuitive and robust solution for automation and control of home IoT networks.
- Architect a platform agnostic solution to overcome existing gaps and meet the performance and cost constraints
- Security by design: Use STRIDE Threat Modelling approach to identify vulnerabilities in the network and devise appropriate countermeasures
- Make appropriate **design choices** to incorporate the same in the architecture

Non-functional Requirements

Cost-effectiveness

The solution should be cheap. Must integrate with existing infrastructure.

Security The network should have security by design.

Scalability

•

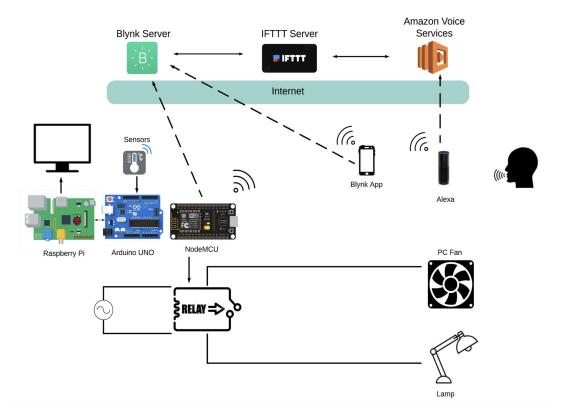
The design should not have any choke points. It must be easy to add more devices.

Manageability

The interfacing with the network should be seamless and intuitive.

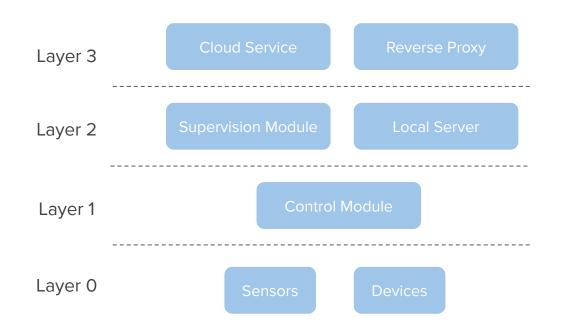
Configurability

It should be possible to update and configure the network over the air.



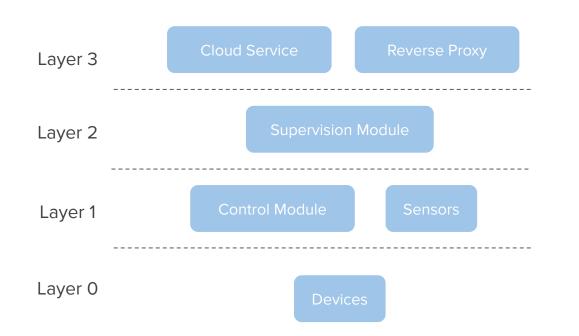
- Y. Igarashi, M. Hiltunen, K. Joshi, and R. Schlichting, ``An Extensible Home Automation Architecture based on Cloud Offloading", In 18th International Conference on Network-Based Information Systems, 2015.
- D. Greenstreet and J. Smrstik, Texas Instruments, "Voice as the user interface a new era in speech processing", May 2017.
- V. Stangaciu, V. Opârlescu, P. Csereoka, R. D. Cioargă, and M. V. Micea. "Scalable Interconnected Home Automation System", In 21st International Conference on System Theory, Control and Computing (ICSTCC), 2017.
- D. Kumar, R. Paccagnella, P. Murley, E. Hennenfent, J. Mason, A. Bates, and M. Bailey, "Skill Squatting Attacks on Amazon Alexa", In 27th USENIX Security Symposium, ISBN 978-1-931971-46-1, Aug., 2018.
- Booz Allen Hamilton, "2019 Cyber Threat Outlook", 2019.
- J. Cichonski, J. Marron, and N. Hastings, "Security for IoT Sensor Networks", National Institute of Standards and Technology, February 2019.
- C. Withanage, R. Ashok, C. Yuen, and K. Otto, "A Comparison of the Popular Home Automation Technologies," In IEEE Innovative Smart Grid Technologies, 2014.
- R Style Labs, "Building Intelligent Connected Home Solutions: Challenges and Ways to Overcome Them", 2019.
- M. Fagan, M. Yang, A. Tan, L. Randolph, and K. Scarfone, "Security Review of Consumer Home Internet of Things (IoT) Products", National Institute of Standards and Technology, U. S Department of Commerce Tech. Report, October 2019.

Previous Architecture

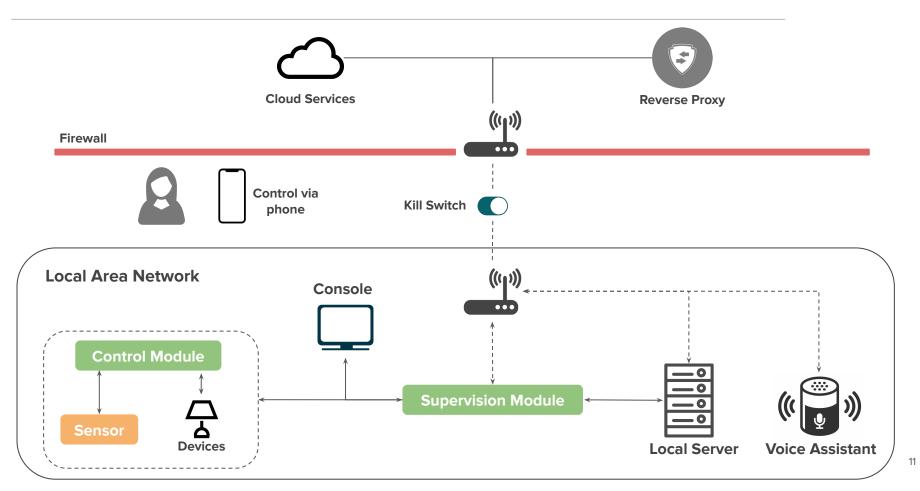

Advantages

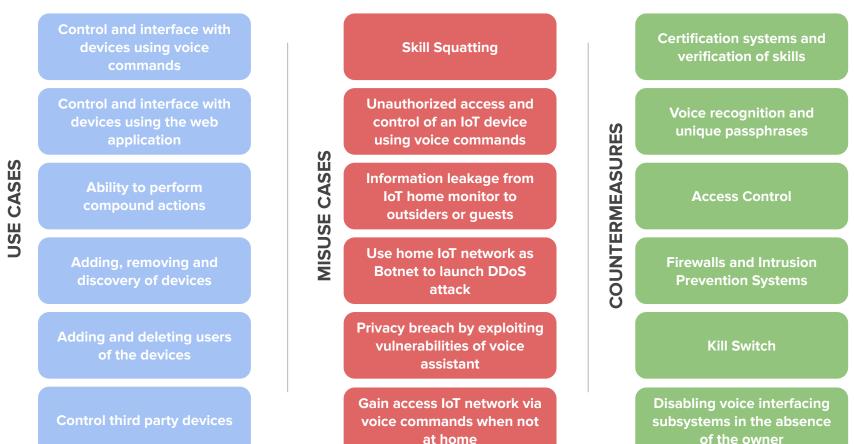
- Simple
- Cost effective
- Secure

Disadvantages


- High latency
- Limited capabilities
- Low configurability
- Platform dependence

- Control Module
 Wifi enabled boards to
 control the IoT network
- Supervision Module Manages the control modules and the data
- Local Server
 Endpoint for the outputs
 from voice assistant services




- Control Module
 Wifi enabled boards to
 control the IoT network
- Supervision Module Manages the control modules and the data
- Cloud Server
 Endpoint for the outputs
 from voice assistant services

Architecture - Iteration 1

12

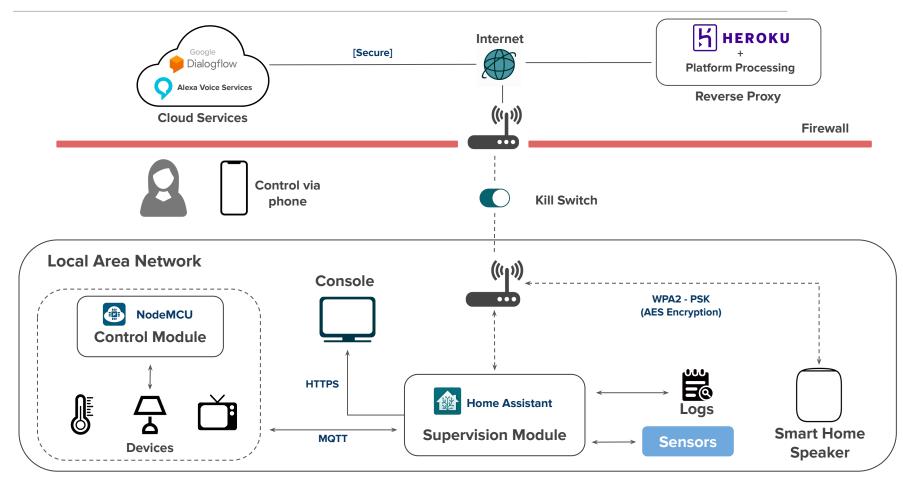
Threat modelling works to **identify**, **communicate**, and **understand** threats and **mitigations** within the context of protecting something of value

Threat	Countermeasure
An attacker can reuse a password	Periodic changing of passwords
An attacker can anonymously connect to the network	 Secure communication protocols (WPA2 - PSK) Session cookies
Response spoofing from the server	 Security by Obscurity - Reverse Proxy Nonce Encryption
System ships with default passwords	Software authentication architecture - force change default passwords

Threat	Countermeasure
Distributed 'Access Control' rules	Centralized Home Hub
An attacker can replay data without detection	Nonce - timestamps and sequence numbers
An attacker can directly modify or write to a data store	Secure communication protocolsAccess control

Threat	Countermeasure
The system has no logs	Logging software
An attacker can alter log messages on the network	Heartbeat option for logging system
An attacker can edit logs and there's no way to tell	Secure communicationAccess control

Threats	Countermeasure
An attacker can see error messages with security-sensitive content	Default error messages
An attacker can act as the man in the middle	EncryptionCertification
The attacker can discover the fixed key being used for encryption	Periodic change of keysSecure storage of keys


Threat	Countermeasure
An attacker can render your authentication system unusable	Security by obscurity - Reverse Proxy
An attacker can make your network unstable	Rate limiting on requests per device
An attacker can block functionality	Rate limiting on requests per deviceIntrusion Detection Systems

Threats	Countermeasure
A single person holds all the access rights	
You include user-generated content within your page, possibly including the content of random URLs (XSS)	Handled by protocols and structured communication standards.
An attacker can inject a command that will run at a higher privilege level	Code filteringNetwork segmentation

Architecture - Incorporating Design Choices

20

Home Assistant

Publisher-Subscriber communication model
 Implement the communication using the 'Message Queuing
 Telemetry Transport' protocol

Properties:

- Scalable
- High Availability and Redundancy
- Retains messages for sessions
- Connection State change monitoring

Security:

- Certificates
- TLS
- Authentication (username and password)
- Heroku as the Reverse Proxy
- Home Assistant as the home hub

Implementation - Semester 8

- Hardware
 - Rewiring and connecting devices
 - Designing **Two-Way** switching

• Skills Development

• Create and deploy skills on both platforms

• System Integration

- Hardware and software integration
- Software and Penetration Testing
- Research paper

Thank you